
Fast Point Quadrupling on Elliptic Curves

Duc-Phong Le
Information Security Group

Temasek Laboratories
National University of Singapore

Singapore 119260
tslld@nus.edu.sg

Binh P. Nguyen
School of Information and Communication

Technology
Hanoi University of Science and Technology

Hanoi, Vietnam
binhnp@soict.hut.edu.vn

ABSTRACT
Ciet et al. (2006) proposed an elegant method for trading
inversions for multiplications when computing [2]P+Q from
two given points P and Q on elliptic curves of Weierstrass
form. Motivated by their work, this paper proposes a fast al-
gorithm for computing [4]P with only one inversion in affine
coordinates. Our algorithm that requires 1I + 8S + 8M,
is faster than two repeated doublings whenever the cost of
one field inversion is more expensive than the cost of four
field multiplications plus four field squarings (i.e. I > 4M +
4S). It saves one field multiplication and one field squaring
in comparison with the Sakai-Sakurai method (2001). Even
better, for special curves that allow “a = 0” (or “b = 0”)
speedup, we obtain [4]P in affine coordinates using just 1I
+ 5S + 9M (or 1I + 5S + 6M, respectively).

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
in finite fields; G.4 [Mathematics of Computing]: Math-
ematical software—Algorithm design and analysis, Efficiency

General Terms
Algorithms

Keywords
Elliptic curve cryptography, fast arithmetic, quadrupling,
affine coordinates

1. INTRODUCTION
The use of elliptic curves in cryptography was suggested

independently by Miler in [8] and Koblitz in [7]. Since then,
Elliptic Curve Cryptography (ECC) have received a lot of
attention due to the fast group law on elliptic curves and
no sub-exponential attack on the discrete logarithm prob-
lem defined over elliptic curves. Recall that the best known

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoICT 2012, August 23-24, 2012, Ha Long, Vietnam.
Copyright 2012 ACM 978-1-4503-1232-5/12/08 ...$10.00.

discrete logarithm algorithm on elliptic curves is the par-
allelized Pollard rho algorithm [11, 10], which has running
time O(

√
r), where r is the prime order of the largest sub-

group of points on an elliptic curve E. Meanwhile, the best
algorithm for discrete logarithm computation in a finite field
Fq is the index calculus attack [9] which has sub-exponential
running time in the field size (i.e., q). Thus to achieve the
same level of security in both groups, q must be significantly
larger than r. For example, at 80-bit of security level, it is
required that r ≥ 2160 and q ≥ 21024 (see NIST recommen-
dations [2]). In other words, ECC can provide the same
security level as RSA (or Diffie-Hellman) but with much
shorter keys. This is mainly relevant for small embedded
devices.

In [4], Ciet et al. introduced a fast algorithm trading one
inversion for several multiplications to compute [2]P + Q
from two given points P and Q on an elliptic curve. Their
algorithm, which requires 1I + 2S + 9M, is faster than the
Eisenträger et al. method [5] whenever the cost of one field
inversion is more expensive than the cost of six field multi-
plications.

The idea of trading field inversions for field multiplications
when computing [4]P has been appeared in a work of Sakai
and Sakurai [12], in which the authors presented a general
formula for computing [2k]P in both affine and projective
coordinates. In affine coordinates, their method requires
one field inversion, (4k+1) field multiplications and (4k+1)
field squarings. For k = 2, the cost of their algorithm is one
inversion, 9 multiplications and 9 squarings.

In this paper, motivated by the Ciet et al.’s method, we
introduce new formulas for quadrupling of points on elliptic
curves over finite fields of odd characteristic p > 3 in affine
coordinates. Our algorithm requires one field inversion, 8
field multiplications and 8 field squarings on general curves.
In comparison to the Sakai-Sakurai method [12], our algo-
rithm saves one field multiplication and one field squarings.
It is also faster than two repeated doublings if the cost of
one field inversion is more expensive than the cost of four
field multiplications plus four field squarings. Even better,
for curves that are sensibly chosen with small parameters
so that multiplications by those parameters have negligible
cost, [4]P can be computed by using just only 1I + 7S +
7M. Moreover, for curves that allow “a = 0” speedup which
can be found in many pairing-friendly elliptic curves, we ob-
tain [4]P in affine coordinates by using just 1I + 5S + 6M.

The rest of the paper is organized as follows. Definitions
of elliptic curve cryptography are briefly recalled in Section
2. Section 3 presents our algorithms. We also give some

analysis in this section. Section 4 concludes the paper.

2. PRELIMINARIES
In this section, we first recall some basic definitions in

elliptic curve cryptography. For much more material on el-
liptic curve cryptography we refer to [6]. Then we review
the algorithm of Ciet al et. [4] for computing [2]P +Q from
two given points P and Q on an elliptic curve E.

2.1 Elliptic curves over finite fields
For a prime p with p > 3, let Fq = Fpm (m ≥ 1) be a

finite field of characteristic p having q elements. An elliptic
curve E defined over the finite field Fq (denoted E/Fq) in
short Weierstrass form is the set of solutions (x, y) to the
following equation:

E : y2 = x3 + ax+ b, (1)

together with an extra point O which is called the point at
infinity, where a, b ∈ Fq such that the discriminant ∆ =
−16(4a3 + 27b2) is non-zero.

We usually use the notation E(Fq) for the set of points
(x, y) with coordinates in the field Fq together with the point
O, the identity element of the group. Points on an elliptic
curve can be represented in several coordinate systems, such
as affine coordinates, and projective coordinates.

We also use the notation #E(Fq) for the number of points
on the elliptic curve E. The curve E/Fq can have at most
2q + 1 points, i.e. the point at infinity O along with 2q
pairs (x, y) with x, y ∈ Fq, satisfying the equation 1. This
is because, for each x ∈ Fq, there are at most two possible
values of y ∈ Fq, satisfying 1. But in reality, not all elements
of Fq has a square root. Approximatively, only half of the
elements in Fq = Fq\{0} have square roots. Therefore the
expected number of points on E/Fq is about q+ 1. If we set

#E(Fq) = q + 1− t,

where the value t is called the trace of Frobenius at q. The
following well-known theorem of Hasse gives a tight bound
of the number of points on an elliptic curve over a finite
field.

Theorem 1 (Hasse, 1933). The trace of Frobenius sat-
isfies

|t| ≤ 2
√
q.

The Group Law
The set of points on an elliptic curve forms a group under
a certain addition rule. Let P1 = (x1, y1) and P2 = (x2, y2)
be two points on elliptic curve E. The negative of the point
P1 is given −P1 = (x1,−y1). Assume that P1 6= −P2. Then
the coordinates of P3 = P1 +P2 = (x3, y3) can be computed
as follows:

x3 = λ2 − x1 − x2, (2a)

y3 = λ(x1 − x3)− y1, (2b)

where

λ =

{
3x2

1+a

2y1
if P1 = P2,

y2−y1
x2−x1

otherwise.
(3)

The doubling and addition costs are 1I + 2M + 2S and
1I + 2M + 1S, respectively, in affine coordinates, where I,
M and S denote field inversion, field multiplication and field
squaring, respectively. For every n ∈ N, let [n] denote scalar
multiplication by n, i.e., [n] : P 7→ [n]P = P + · · ·+ P︸ ︷︷ ︸

n terms

.

Graphically, this addition law can be interpreted as in the
Figure 1. The straight line passing P1 and P2 will have the
third intersection with the curve at the point −P3, where
−P3 = (−x3, y3).

Figure 1: Addition Law of Points on Elliptic Curves

2.2 Ciet et al. Algorithm
In [4], the authors gave formulas to directly compute [2]P+

Q from given points P and Q on elliptic curves with one field
inversion, 2 field squarings and 9 field multiplications. The
key idea is to perform two additions (P + (P +Q)) instead
of one doubling and then one addition. Given two points
P = (x1, y1), Q = (x2, y2), the sum R = (P + (P + Q)) is
obtained by:

λ1 =
y2 − y1
x2 − x1

, x3 = λ2
1 − x1 − x2, y3 = λ1(x1 − x3)− y1,

λ2 =
y3 − y1
x3 − x1

, x4 = λ2
2 − x1 − x3, y4 = λ2(x1 − x4)− y1.

Eisenträger et al. observed that the y-coordinate of (P +
Q) can be omitted and thus one field multiplication is saved
(see [5]). From this observation, Ciet et al. [4] went further
and showed that the x-coordinate of the point (P +Q) can
also be omitted and two divisions from calculation of λ1

and λ2 can obtained by one inversion. Their algorithm is
described as in Table 1.

3. THE ALGORITHM
Our algorithm performs a quadrupling [4]P on an elliptic

curve E in affine coordinates using only one field inversion,
8 field multiplications, and 8 field squarings.

3.1 Description of the Algorithm
Let P = (x1, y1), we need to compute [4]P = (x4, y4). Let

d = (3x2 + a)(12x1y1 − 3(x2 + a)2)− 8y41 . (4)

It is easy to see that d = 8y1y3, where y3 is y-coordinate of
the point [2]P . The computation of the value d requires 1M

Table 1: ([2]P +Q) algorithm, for Weierstrass elliptic
curves over a field Fq

Input: P = (x1, y1) 6= O, Q = (x2, y2) 6= O
Output: T = [2]P +Q = (x4, y4)

if (x1 = x2) then
if (y1 = y2) then return [3]P else return P ;
A← (x2 − x1)2;
B ← (y2 − y1)2;
d← A(2x1 + x2)−B; 2S

if (d = 0) then return O;
D ← (x2 − x1)d; 1M
I ← D−1; 1I
λ1 ← dI(y2 − y1); 2M
λ2 ← 2y1A(x2 − x1)I − λ1; 3M
x4 ← (λ2 − λ1)(λ2 + λ1) + x2; 1M
y4 ← λ2(x1 − x4)− y1; 1M

return (x4, y4);

Total: 1I + 2S + 9M

+ 5S. If a and b are small, then d can be computed by 4S
as follows (we assume that a2, a3 and 27b2 are precomputed
and cached):

d = y41 + 3ax41 − 6a2x21 + 18by21 − 24abx1 − a3 − 27b2. (5)

Defining D = (2y1)d and I = D−1, we have:

1
2y1

= dI, 1
2y3

= 8y41I.

The algorithm works as in Table 2. The total cost is 1I +
8S + 8M. If a and b are small, our algorithm can perform
a quadrupling of point using just 1I + 7S + 7M.

Quadrupling on curves with b = 0: In the case of
b = 0, d should be set to

d = (x2 − a)((x2 + a)2 + 4ax2). (6)

That is because, in this setting, y3 = (x21− a)((x21 + a)2 +
4ax21)/8y31 . Thus, we only need 2M + 2S to compute d. By
performing similarly as in Table 2, the quadrupling compu-
tation of a point on an elliptic curve requires only 1I + 5S
+ 9M.

Quadrupling on curves with a = 0: In the case of
a = 0, the slopes λ1 = 3x2/2y1 and λ2 = 3x3/2y3 are par-
ticularly simple. The value d in the Equation (4) can be
replaced by

d = y41 + 18by21 − 27b2, (7)

Assume that 27b2 is precomputed and cached, the equa-
tion (7) can be computed using just two squarings. In com-
parison with the equation (4), we save one multiplication
and 3 squarings.

In this setting, x3 = λ2
1 − 2x1 = x1(y21 − 9b)/(4y21), which

will be used for computing λ2. We have:

λ2 =
3x23
2y3

=
3x21(y21 − 9b)2

32y41y3
(8)

= 3x21
(y41 − 18by21 + 81b2)

2D
(9)

=
3

2
(x21(y41 − 18by21 + 81b2)I), (10)

Table 2: Quadrupling algorithm of a point on curves
of form y2 = x3 + ax+ b, where ab 6= 0

Input: P = (x1, y1) 6= O
Output: T = [4]P = (x4, y4)

if (y1 = O) then return P ;
A← x21; B ← 3x21 + a; 1S
C ← 2y21 ; E ← C2; 2S
F ← (x1 + C)2 −A− E; 1S
d← B(3F −B2)− 2E; 1S + 1M

if (d = 0) then return O;
D ← (2y1)d; 1M
I ← D−1; 1I
λ1 ← dIB; 2M
x3 ← λ2

1 − 2x1; 1S
y3 ← λ1(x1 − x3)− y1; 1M
H ← 3x23 + a; 1S
λ2 ← 2EIH; 2M
x4 ← λ2

2 − 2x3; 1S
y4 ← λ2(x3 − x4)− y3; 1M

return (x4, y4);

Total: 1I + 8S + 8M

where D = (2y1)d = 16y41y3 and I = D−1.
Table 3 performs quadrupling of a point in 1I + 5S + 6M.

3.2 Analyze
From the operation count we see that the algorithm is

faster than two repeated doublings if one field inversion is
more expensive than 4M + 4S on general curves. In com-
parison with the Sakai-Sakurai [12] algorithm, our method
saves one field multiplication and one field squaring.

The advantage of a respective method depends on I/M
ratios and S/M-ratios over prime fields. In this analysis,
the ratio of a field squaring to a field multiplication is set
to be S = 0.8M as commonly used in the literature, see [3].
The S/M-ratios deeply depend on many factors such as the
implementations, hardware architecture, the prime charac-
teristic of finite fields, the size of finite fields, etc. For ex-
ample, the inversion-to-multiplication (S/M) ratio is bigger
than 100 on smart cards (see [13]). On workstations, for
NIST-recommended elliptic curves over prime fields chosen
to either be a Mersenne prime, or a Mersenne-like prime
for fast modular reduction and multiplication, this ratio is
roughly 80 (see benchmarks reported in [3]). In the cases
when the Mersenne prime cannot used (e.g. pairing-based
cryptography), the S/M-ratio is often reported to be 13 on
32-bits Intel processors (see benchmarks reported in [1]).

In this setting, our algorithm is better than two repeated
doubling in the case 1I > 7.2M.

On special elliptic curves, our algorithms are even better.
For curves that are sensibly chosen with small parameters
so that multiplications by those parameters have negligible
cost, we compute [4]P using just only 1I + 7S + 7M, thus
it is faster than two repeated doublings if 1I > 5.4M. For
curves with b = 0, our algorithm requires only 1I + 5S +
9M, it is faster than two repeated doublings if 1I > 5.8M.
Even better, for curves with a = 0 (this form of curves can
be found in pairing-friendly elliptic curves admitting a twist
of degree 2, 3, and 6), our algorithm requiring only 1I + 5S

Table 3: Quadrupling algorithm of a point on curves
of form y2 = x3 + b

Input: P = (x1, y1) 6= O
Output: T = [4]P = (x4, y4)

if (y1 = O) then return P ;
A← x21; B ← A2; 2S
C ← 3x21; d← B + 18bA− 27b2; 1S

if (d = 0) then return O;
D ← (2y1)d; 1M
I ← D−1; 1I
I ′ ← CI; 1M
λ1 ← I ′d; 1M
λ2 ← I ′(y41 − 18by21 + 81b2)/2; 1M
x3 ← λ2

1 − 2x1; 1S
y3 ← λ1(x1 − x3)− y1; 1M
x4 ← λ2

2 − 2x3; 1S
y4 ← λ2(x3 − x4)− y3; 1M

return (x4, y4);

Total: 1I + 5S + 6M

+ 6M is faster than two repeated doublings if 1I > 2.8M.
Let us recall that in pairing-friendly cryptography, elliptic
curves that have twists of degree d = 2, 3, and 6 are defined
by the equation y2 = x3 + b.

Table 4 sumarizes the computational complexity and make
a comparison between our method and other methods when
computing a point quadrupling on elliptic curves of Weier-
strass form.

Table 4: Comparison of point quadrupling on Weier-
trass curves y2 = x3 + ax+ b defined over Fq

Curves
Traditional Sakai-Sakurai Our method
method method

a, b ∈ Fq 2I+ 4S+ 4M 1I+ 9S+ 9M 1I+ 8S+ 8M
a, b small 2I+ 4S+ 4M 1I+ 9S+ 8M 1I+ 7S+ 7M
b = 0 2I+ 4S+ 4M 1I+ 9S+ 9M 1I+ 5S+ 9M
a = 0 2I+ 4S+ 4M 1I+ 9S+ 8M 1I+ 5S+ 6M

4. CONCLUSION
In this paper, we presented the fast algorithms for qua-

drupling of point on three forms of elliptic curves that offer a
better performance than a repeated doubling if 1I > 7.2M,
1I > 5.8M, and 1I > 2.8M, respectively. This can be helpful
to speedup the scalar multiplication in elliptic curve cryp-
tography as indicated in [12, 4]. Our quadrupling algorithm
can be used to speed up pairing computation over elliptic
curves of form y2 = x3 + b in affine coordinates.

Acknowledgement
The authors thank anonymous referees for useful comments
and suggestions.

5. REFERENCES
[1] T. Acar, K. Lauter, M. Naehrig, and D. Shumow.

Affine pairings on ARM. Cryptology ePrint Archive,
Report 2011/243, 2011.
http://http://eprint.iacr.org/2011/243/.

[2] E. Barker, W. Barker, W. Burr, W. Polk, and
M. Smid. NIST 800-57, Recommendation for Key
Management, May 2011.

[3] M. Brown, D. Hankerson, J. López, and A. Menezes.
Software implementation of the nist elliptic curves
over prime fields. In Proceedings of the conference on
Topics in Cryptology: The Cryptographer’s Track at
RSA (RSA-CT 2001), pages 250–265. Springer-Verlag,
2001.

[4] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery.
Trading inversions for multiplications in elliptic curve
cryptography. Designs, Codes and Cryptography,
9(2):189–206, 2006.

[5] K. Eisenträger, K. Lauter, and P. L. Montgomery. Fast
elliptic curve arithmetic and improved weil pairing
evaluation. In Proceedings of the 2003 RSA conference
on the Cryptographers’ Track (RSA-CT 2003), volume
2612 of Lecture Notes in Computer Science, pages
243–354. Springer Berlin / Heidelberg, 2003.

[6] D. Hankerson, A. Menezes, and S. Vanstone. Guide to
Elliptic Curve Cryptography. Springer-Verlag New
York, Inc., 2003.

[7] N. Koblitz. Elliptic curve cryptosystems. Mathematics
of Computation, 48(177):203–209, 1987.

[8] V. S. Miller. Use of elliptic curves in cryptography. In
Lecture Notes in Computer Sciences; 218 on Advances
in Cryptology – CRYPTO 85, pages 417–426, New
York, NY, USA, 1986. Springer-Verlag New York, Inc.

[9] A. Odlyzko. Discrete logarithms in finite fields and
their cryptographic significance. In Proc. of the
EUROCRYPT 84 Workshop on Advances in
Cryptology: Theory and Application of Cryptographic
Techniques, pages 224–314, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

[10] P. C. V. Oorschot and M. J. Wiener. Parallel collision
search with cryptanalytic applications. Journal of
Cryptology, 12:1–28, 1996.

[11] J. M. Pollard. Monte Carlo Methods for Index
Computation (mod p). Mathematics of Computation,
32(143):918–924, Jul 1978.

[12] Y. Sakai and K. Sakurai. Efficient scalar
multiplications on elliptic curves with direct
computations of several doublings. IEICE
Transactions on Fundamentals, E84-A(1):120–129,
2001.

[13] M. Seysen. Using an RSA accelerator for modular
inversion. In Proceedings of the 7th International
Conference on Cryptographic Hardware and Embedded
Systems (CHES’05), volume 3659 of Lecture Notes in
Computer Science, pages 226–236, Berlin, Heidelberg,
2005. Springer-Verlag.

APPENDIX
A. PSEUDO-CODE

In this section, we present the pseudo-code for the qua-
drupling algorithm described in Section 3. Let (x1, y1) be
a point on a curve of short Weierstrass form defined over
the finite field Fq. The following algorithm updates (x1, y1)
with [4](x1, y1). (Field) registers are denoted by Ti.

Input: P = (x1, y1) 6= O, T1 ← x1, T2 ← y1, a, b
Output: T = [4]P = (x4, y4)

if (T2 = O) then return P ;
1. T3 = T 2

1 ; {x21}
2. T4 = 3T3; {3x21}
3. T4 = T4 + a; {3x21 + a}
4. T5 = T 2

2 ; {y21}
5. T5 = 2T5; {2y21}
6. T6 = T 2

5 ; {4y41}
7. T7 = T1 + T5; {x1 + 2y21}
8. T7 = T 2

7 ; {(x1 + 2y21)2}
9. T7 = T7 − T3; {(x1 + 2y21)2 − x21}

10. T7 = T7 − T6; {(x1 + 2y21)2 − x21 − 4y41}
11. T7 = 3T7; {12x1y

2
1}

12. T3 = T 2
4 ; {(3x21 + a)2}

13. T3 = T7 − T3; {12x1y
2
1 − (3x21 + a)2}

14. T3 = T4 × T3; {(3x21 + a)
(12x1y

2
1 − (3x21 + a)2)}

15. T6 = 2T6; {8y41}
16. T3 = T3 − T6; {d = (3x21 + a)(12x1y

2
1−

−(3x21 + a)2)− 8y41}
if (T3 = 0) then return O;
17. T7 = 2T2; {2y1}
18. T7 = T7 × T3; {D = 2y1d}
19. T7 = 1/T7; {I = D−1}
20. T5 = T3 × T7; {dI}
21. T5 = T5 × T4; {λ1 = dI(3x21 + a)}
22. T4 = T 2

5 ; {λ2
1}

23. T4 = T4 − T1; {λ2
1 − x1}

24. T4 = T4 − T1; {x3 = λ2
1 − 2x1}

25. T1 = T1 − T4; {x1 − x3}
26. T1 = T1 × T5; {λ1(x1 − x3)}
27. T1 = T1 − T2; {y3 = λ1(x1 − x3)− y1}
28. T2 = T 2

4 ; {x23}
29. T2 = 3T2; {3x23}
30. T2 = T2 + a; {3x23 + a}
31. T2 = T2 × T6; {8y41(3x23 + a)}
32. T2 = T2 × T7; {λ2 = 8y41(3x23 + a)I}
33. T3 = T 2

2 ; {λ2
2}

34. T3 = T3 − T4; {λ2
2 − x3}

35. T3 = T3 − T4; {x4 = λ2
2 − 2x3}

36. T5 = T4 − T3; {x3 − x4}
37. T5 = T5 × T2; {λ2(x3 − x4)}
38. T5 = T5 − T1; {y4 = λ2(x3 − x4)− y3}

return (T3, T5);

