
An efficient clustering method for fast rendering of time-varying
volumetric medical data

Zhenlan Wang · Binh P. Nguyen · Chee-Kong Chui ·
Jing Qin · Chuan-Heng Ang · Sim-Heng Ong

Abstract Visualization and exploration of time-varying
volumetric medical data help clinicians for better diagno-
sis and treatment. However, it is a challenge to render these
data in an interactive manner because of their complexity
and large size. We propose an efficient clustering method
for fast compression and rendering of these large dynamic
data. We divide the volumes into a set of blocks and use
a BIRCH (Balanced Iterative Reducing and Clustering us-
ing Hierarchies) based algorithm to cluster them, which can
usually find a high quality clustering with a single scan of
the blocks. In addition, the granularity of clusters can be

Z. Wang · C.-K. Chui
Department of Mechanical Engineering, Faculty of Engineering,
National University of Singapore, Singapore, Singapore

Z. Wang
e-mail: mpewzl@nus.edu.sg

C.-K. Chui
e-mail: mpecck@nus.edu.sg

B.P. Nguyen (�) · S.-H. Ong
Department of Electrical and Computer Engineering,
Faculty of Engineering, National University of Singapore,
Singapore, Singapore
e-mail: phubinh@nus.edu.sg

S.-H. Ong
e-mail: eleongsh@nus.edu.sg

J. Qin
Department of Diagnostic Radiology, Yong Loo Lin School
of Medicine, National University of Singapore, Singapore,
Singapore
e-mail: dnrqj@nus.edu.sg

C.-H. Ang
Department of Computer Science, School of Computing, National
University of Singapore, Singapore, Singapore
e-mail: dcsach@nus.edu.sg

adaptively adjusted by dynamically configuring threshold
values. In each cluster of blocks, a KeyBlock is generated to
represent the cluster, and therefore the storage space of the
volumes is reduced greatly. In addition, we assign a lifetime
to every KeyBlock and implement a dynamic memory man-
agement scheme to further reduce the storage space. During
the rendering, each KeyBlock is rendered as a KeyImage,
which can be reused if the view transformation and transfer
function are not changed. This reuse can help to increase the
rendering speed significantly. Experimental results showed
that the proposed method can achieve good performance in
terms of both speed optimization and space reduction.

Keywords Time-varying volume rendering · BIRCH ·
Clustering · 4-D medical images

1 Introduction

With the development of three-dimensional (3-D) medical
imaging techniques, high resolution volumetric data are cap-
tured to allow the assessment of the morphology of anatom-
ical and pathologic structures. However, many aspects rele-
vant for diagnostic decisions and treatment planning cannot
be evaluated by means of static images. For example, phys-
iological parameters such as blood flow, vessel permeability
and tumor perfusion, which are essential to the diagnostic
judgement of the damage area of an ischemic stroke, cardiac
infarction and the malignancy of tumor, can only be acquired
by time-varying (dynamic) image data [1, 2]. Furthermore,
physicians can track disease progress or its response to ther-
apy over a short time or over several months or years based
on dynamic data. To this end, visualization and exploration
of these time-varying volume data are usually crucial for
clinicians to make more accurate diagnosis and treatment.

mailto:mpewzl@nus.edu.sg
mailto:mpecck@nus.edu.sg
mailto:phubinh@nus.edu.sg
mailto:eleongsh@nus.edu.sg
mailto:dnrqj@nus.edu.sg
mailto:dcsach@nus.edu.sg

Z. Wang et al.

With the advancement in radiological science, dynamic
scanning is increasingly popular in clinical applications.
Fast rendering of these time-varying data, however, is a
challenging task. With marked improvement of spatial and
temporal resolution, these data usually has hundreds of
megabytes or even gigabytes. This makes time and stor-
age requirement for visualization dramatically increase. Pre-
processing such as encoding and compression are usually
necessary. Traditional encoding and compression algorithms
based on spatial features applied on 3-D data are no longer
affordable for dynamic data, as they should be analyzed and
processed in the joint feature-temporal space. On the other
hand, we need to keep a balance between the compression
ratio and the quality of the rendered results to ensure that
the clinicians can obtain enough indications for diagnostic
decisions.

We propose an efficient clustering method for fast ren-
dering of these time-varying volumetric medical data. We
divide the volumes into a set of blocks and cluster them con-
sidering both spatial and temporal coherence by employing
a modified BIRCH algorithm [3]. In each cluster of blocks, a
KeyBlock is generated to represent the cluster by considering
the contributions of all blocks. Thus the storage space of the
volumes is reduced greatly. In addition, we assign a lifetime
to every KeyBlock and implement a dynamic memory man-
agement scheme to further reduce the storage space. During
rendering, each KeyBlock is rendered as a KeyImage, which
can be reused if the view transformation and transfer func-
tion are not changed. Extensive experiments have been con-
ducted to evaluate the feasibility of the proposed method, in
terms of compression speed, compression ratio and render-
ing speedup. Regression testing is also employed to analyze
the impact of the compression scheme on the visual quality
of rendering.

The rest of the paper is organized as follows. Section 2
discusses related work. The implementation details of the
proposed method are presented in Sect. 3. The experiments
are described and discussed in Sect. 4. The paper concludes
in Sect. 5.

2 Related work

The size of a typical time-varying volumetric medical im-
age can range from hundreds of megabytes to hundreds of
gigabytes. The visualization of such huge datasets is a chal-
lenging problem due to overwhelming data size, insufficient
memory and I/O bandwidth, and heavy computational re-
quirements. In addition to using high performance hard-
ware, compression-based visualization methods which com-
bine efficient decompression closely with rendering would
be extremely useful in such situations.

Among the relatively small number of published papers
on time-varying volumetric medical images compression,

methods which treat the data as a four-dimensional (4-D)
field are dominant. In [4], a 4-D tree, which is an extension
of the octree, is used for encoding time-varying data. Other
methods often use the discrete wavelet transform (DWT),
followed by quantization and/or a coefficient partitioning
technique such as the embedded zerotree wavelet (EZW)
[5] and set partitioning in hierarchical trees (SPIHT) [6],
and finally a symbol coding method. Zeng et al. used 4-D
DWT and extended EZW to 4-D to encode the echocardio-
graphic data [7]. SPIHT is extended to 4-D and used with
4-D DWT in [8] to compress fMRI and 4-D ultrasound im-
ages. Liu and Pearlman extended subband block hierarchical
partitioning (SBHP), another coefficient partitioning tech-
nique originally described in [9], to 4-D and used it with
4-D wavelet decomposition for enabling progressive fidelity
and resolution decompression of 4-D images [10]. Gener-
ally, a method that relies on the 4-D wavelet transform can
offer relatively high compression ratios with reasonable fi-
delity. However, it is not easy to achieve a fast decompres-
sion process due to the high complexity of the 4-D wavelet
transform. In addition, a number of time steps (i.e., frames)
may need to be decoded even if only one of them is to be
manipulated or rendered.

The other approaches separate time dimension from spa-
tial dimensions. In [11], a 4-D volume rendering algorithm
based on time-space partitioning (TSP) tree is proposed, and
the algorithm is improved by using new color-based error
metrics [12]. The TSP tree is effective in capturing spa-
tial and temporal coherence of data and rendering perfor-
mance is thus improved. However, the TSP tree is built as
a supplementary data structure, and consequently, results
in extra memory overhead and it cannot reduce the space
or I/O bandwidth effectively. Shen and Johnson proposes
the differential volume rendering method, in which only the
changed pixels are re-rendered in each time step [13]. How-
ever, the process of determining the changed pixels may
be long especially when the amount of changed pixels is
large. In [14] and [15], this process is improved by using a
two-level differential volume rendering method. The render-
ing performance of this method is improved since the time
for determining the positions of changed pixels is reduced.
However, this method cannot completely take advantage of
the data coherence to further accelerate rendering.

Wang et al. proposes the dynamic linear level octree
(DLLO) data structure for 4-D volume rendering [16]. This
method effectively resolves the I/O bandwidth problem and
exhibits distinguished rendering speedup, but the employ-
ment of octree restricts its flexibility to exploit more exten-
sive data coherence while decomposing the volume data.
In [17], high-pass coefficients from the Laplacian decom-
position are encoded using vector quantization. During the
rendering, the volume data is decompressed on-the-fly and
rendered using hardware texture mapping. This method can

An efficient clustering method for fast rendering of time-varying volumetric medical data

be applied to time-varying data set since each volume frame
can be encoded separately, producing an index texture and
local codebooks for every time step. Although the decom-
pression speed is considerably fast due to the simple decod-
ing, this approach does not exploit the dependency among
voxels in different volumes. Furthermore, for a given reso-
lution, the compression ratio is fixed and does not depend
on the content of the volume. Several methods consider a
4-D image as 3-D video and extend the motion estimation
and compensation techniques in video coding to 3-D for ex-
ploiting redundancies in all four dimensions [18, 19]. How-
ever, it is difficult for these methods to achieve a good ren-
dering performance since a number of prior frames need to
be decoded before processing and rendering an intermediate
frame.

3 The clustering-based volume rendering method

3.1 Clustering

A time-varying volumetric medical dataset usually contains
a sequence of 3-D volumes, which are collections of voxels
with density values. We first divide the dataset into a set of
blocks (cubes). Given dataset Ψ including v volumes with
n voxels in each dimension, we can uniformly divide these
volumes into blocks with m voxels in each dimension. Thus,
Ψ can be divided into v × (n/m)3 blocks. A good choice
of voxel number m can improve the quality of the cluster-
ing results. It usually depends on the voxel number n and
the characteristics of the dataset. The estimation of it is be-
yond the scope of this paper. We adopt the BIRCH method
to cluster these blocks for two reasons: (1) the I/O cost of
the BIRCH algorithm is linear with the size of the dataset;
and (2) the granularity of clusters can be adaptively adjusted
by dynamically configuring threshold values.

3.1.1 BIRCH-based clustering

BIRCH-based clustering technique is used to exploit the ho-
mogeneousness of time-varying volumetric data. The blocks
from all volumes are grouped into different clusters, and
each cluster is represented by its centroid and radius. We
denote block Bi as a vector: Bi = [xi

1, x
i
2, . . . , x

i
M], where

xi
j is the intensity value of j th voxel and M is the number

of voxels in block Bi , which equals to m3. The distance be-
tween two blocks Bi and Bj is defined as follows:

D(Bi ,Bj) = ‖Bi − Bj‖
M

=
√∑M

k)2
k=1 (xi

k − x
j

M
(1)

which is the normalized Euclidean distance of the two vec-
tors representing the two blocks. We define the centroid and

the radius of a cluster containing N blocks as follows:

C =
∑N

i=1 Bi

N
, (2)

R = max
i

(
D(Bi ,C)

)
. (3)

In our BIRCH-based implementation, all blocks are or-
ganized as a height-balanced tree, named CF tree, with two
parameters, the branching factor F and the distance thresh-
old Dthres. One of the advantages of BIRCH algorithm is
that it can usually find a high quality clustering with a single
scan of the blocks. This is important for large time-varying
volumetric medical data. Here we simply describe our im-
plementation with some adaptations and improvements of
the original BRICH algorithm. More details of BIRCH can
be found in [3].

When a new block B is ready, we recursively descend the
CF tree to compute the distance between the block and the
centroids of existing clusters and find the cluster Xi having
the smallest distance to B . This recursive operation can also
be performed iteratively. Then we compute the value of new
radius R′

i of Xi under the assumption that B is inserted into
it. If R′

i ≤ Dthres, we add the block to Xi and recompute its
centroid C′

i . When there is no space for B , i.e. the number
of block in Xi is greater than F , we must split the leaf node
by choosing the farthest pair of blocks as seeds and redis-
tributing the remaining blocks. If R′

i > Dthres, a new cluster
is created containing only the block B . The pseudo code of
our BIRCH-based clustering algorithm is presented in Al-
gorithm 1.

In Algorithm 1, when a new block B is inserted to into
the cluster Xi on trial, the centroid and radius of the cluster
must be recomputed. The conventional method for comput-
ing the new centroid and radius of the cluster is to apply (2)
and (3). However, this method is computationally expensive
since all of the existing blocks in the cluster needed to be ac-
cessed repeatedly during the block insertion. To reduce the
cost of computation, an approximate method is proposed for
the cluster radius estimation. As illustrated in Fig. 1, an ex-
isting cluster Xi has Ni blocks, the centroid Ci and the ra-
dius Ri . When a new block B is inserted into Xi , the new
centroid C′

i is computed as

C′
i = Ni × Ci + B

(Ni + 1)
(4)

and the new radius R′
i is estimated based on the following

formulas:

r1 = Ri + d

Ni + 1
,

r2 = d × Ni

Ni + 1
,

R′
i = max(r1, r2),

(5)

Z. Wang et al.

Algorithm 1 BIRCH-based clustering algorithm
1: /* RSet: the set of blocks, initially including all the

blocks.
CF: the CF tree which is initially empty. */

2: while (RSet �= empty) do
3: select B from RSet
4: if (CF �= empty) then
5: /* Find the cluster with minimum distance to B */
6: select Xi : min(distance(B,Xi .centroid))
7: /* Try to insert the block into the cluster */
8: compute R′

i

9: /* Judge if the insertion is appropriate */
10: if (R′

i ≤ Dthres) then
11: Xi .radius ⇐ R′

i

12: compute Xi .centroid
13: Xi .size ⇐ Xi .size + 1
14: if (Xi .size > F) then
15: split Xi

16: end if
17: continue
18: end if
19: end if
20: create cluster
21: cluster ⇐ B

22: CF ⇐ CF + cluster
23: RSet ⇐ RSet − B

24: end while
25: return CF

Fig. 1 Estimation of the center and radius of a cluster for a trial inser-
tion of a block

where d is the distance between the trial block B and the
centroid Ri . r1 and r2 are the two candidate radii, and the
greater one will be chosen as the radius of the updated clus-
ter. This mathematical model mimics the linear interpolation
between two weighted points in the M-dimensional space.
If a block is inserted into a cluster, the new center of the
cluster will be pulled towards the inserted block, and the
displacement is inversely proportional to the weights of the
two M-dimensional points, which are the number of blocks
represented respectively.

It is easy to prove that (2) and (4) produce the same re-
sults, meaning that there is no error introduced in the com-
putation of the new centroid. However, (5) tends to produce
a value greater than that of (3), i.e. the radius could be over
estimated. The cluster is actually denser than that implied
by the estimated radius. Therefore, this method is effective
in producing clusters strictly under the pre-defined error-
tolerance Dthres. Section 3.1.2 will present one technique
to adjust Dthres for improving the quality of the clustering.
The proposed method is also computationally efficient as it
avoids accessing blocks that are already in the cluster. Fur-
thermore, in contrast to (3), the computation of the radius
in (5) is independent of the centroid. Thus, only the radius is
evaluated when trying to insert a block into a cluster, and the
centroid is updated only when the radius satisfies the clus-
ter criterion. This implementation significantly improves the
performance of the clustering process.

3.1.2 Clustering granularity

It is obvious that the threshold value Dthres greatly affects
the size and quality of the clustering. For example, cluster
centroids can be too close or cross each other if Dthres is
too small. The number of clusters nc also increases when
Dthres decreases. On the other hand, if Dthres is too large, the
intensity changes in the data may be lost during the render-
ing. Fortunately, BIRCH provides mechanisms to dynami-
cally increase the threshold value when building the CF tree.
Thus, we can set small initial value for Dthres and adjust it
based on the CF tree that has been built. In the default im-
plementation of BIRCH, Dthres is set as 0. In our implemen-
tation, we usually set the initial value based on the nature
of the volumetric data, e.g. the intensity distribution of the
data.

Suppose that Di
thres is the current threshold value and

turns out to be too small. A heuristic approach is used to
estimate next value Di+1

thres. First, the total number of clusters
nc increases with the number of inserted blocks nb . By pre-
serving a relationship table of nc and nb during the CF tree
building, we can estimate ni+1

c using a least squares linear
regression. Thus, we can approximately set

Di+1
thres = Di

thres × ni+1
c

ni
c

. (6)

Second, if we want to decrease the number of clusters in
current CF tree, it is reasonable that we increase Di

thres by
adding the distance of two closest clusters to it so that at least
these two clusters can be merged. We set the new threshold
Dthres based on the following equation:

Di+1
thres thres= max

(
Di × ni+1

c

ni
c

,Dmin

)
. (7)

An efficient clustering method for fast rendering of time-varying volumetric medical data

3.1.3 Output data

In the above descriptions, for simplicity, we assume that
each volume has n voxels in each dimension and each block
has m voxels in each dimension. In practice, the number of
voxels in each dimension of a volume can be different. For
an adaptation to the size of the volume, each dimension of
blocks can have different number of voxels. In addition, a
dataset with a large number of time steps can be divided
into multiple groups of frames in time order in which the
proposed clustering algorithm is applied.

In our implementation, the centroid of a cluster is termed
a KeyBlock. The output of the clustering step is a binary file
containing three following sections:

1. Header information stores the resolution of the 3-D vol-
umes, number of time steps, voxel format, data descrip-
tion and pointers to other sections.

2. Volume-KeyBlock table is a collection of lookup tables
corresponding to all the 3-D volumes, one table for each
volume at one time step. Each table can be considered
as a 3-D array in which each element is a number repre-
senting the link between the corresponding block in the
volume and the KeyBlock of the cluster it belongs to. This
number actually is the index of the KeyBlock in the Key-
Block data section.

3. KeyBlock data contains all KeyBlock generated.

For efficient memory management, each KeyBlock is as-
sociated with a last-volume number (LVN), which is the in-
dex number of the last volume which contains blocks be-
longing to the cluster represented by the KeyBlock. The LVN
indicates the life period during which a KeyBlock is used
to reconstruct volume(s) from time to time and should re-
side in the memory. It also indicates the expiring time af-
ter which the KeyBlock should be released. The KeyBlocks,
therefore, are not released one by one as the order they are
loaded in. A dynamic memory management scheme should
be employed during the implementation. In this way, Key-
Blocks are stored so that they can be properly loaded and
released as the sequence of volume being processed.

3.2 Rendering

In the rendering stage, each 3-D volume is reconstructed
and rendered using any of various existing volume render-
ing techniques directly or with some optimizations. For in-
stance, a ray casting-based rendering method using the pro-
posed clustering algorithm can be described as below.

Denote the index of the working volume as q . Initially,
the volume at the first time step is used as the working vol-
ume (q = 1) and the following steps are executed:

1. KeyBlocks whose LVNs are less than q are released to-
gether with their associated partial-image buffers. The fi-
nal image of the current time step is initialized.

2. KeyBlocks are read from the binary file in turn. Each Key-
Block is associated with a partial-image buffer, and Key-
Image, the rendering result of each KeyBlock, is saved
into the partial-image buffer. After all the KeyBlocks in
volume q are loaded, they are rendered according to the
following two rules:

– Rule 1. If current volume is the first volume, all the
KeyBlocks are rendered.

– Rule 2. If the current model-view transformation or
transfer functions are changed as compared to that in
the previous time step, all KeyBlocks are re-rendered;
otherwise, only KeyBlocks that are newly loaded are
rendered.

3. The KeyImages of the KeyBlocks are composed in 2-D
space according to the Volume-KeyBlock table of volume
q and the final image is constructed by the following
rules:

– Rule 1. According to the current viewing direction,
blocks in volume q are accessed in front-to-back or-
der. Using the information in the Volume-KeyBlock ta-
ble, KeyBlocks can be easily located.

– Rule 2. The KeyImages of the KeyBlocks are composed
into the final image at the corresponding projection
area.

After all blocks of volume q are processed, the final im-
age is produced and displayed.

4. To proceed the volume at the next time step, q is in-
creased by one (q = q + 1).

The above steps are repeated until the whole sequence is
processed. In this algorithm, once the KeyImages are pro-
duced, the final image is generated by composing their col-
ors and opacities in front-to-back order based on the theory
of partial ray composing. The final image can be composed
from the KeyImages by using the over operator [20]. 2-D re-
sampling of the KeyImages may be required if the sampling
rate of the KeyImage is different from that of the final image
or when they are not sampled along the same set of rays.
The early-ray-termination [21] is still possible for both Key-
Block rendering and KeyImage composition, where samples
in KeyImages can be safely skipped when pixels of the final
image are already opaque.

In the rendering methods using over operator directly
(e.g. ray casting), KeyImages are used as the intermediate re-
sults for fastening the composition step; thus, improving the
rendering speed. In other methods (e.g. texture mapping),
the KeyImage may not be used since no over operator is
directly performed. However, the rendering speed still im-
proves in this clustering-based rendering algorithm since the
use of KeyBlocks helps reduce the I/O bandwidth effectively.

Z. Wang et al.

4 Experimental results and discussion

In our experiments, three time-varying volume datasets
named HAND, HEART, and ABDOMEN in DICOM format
were used to evaluate the performance of the proposed algo-
rithm (Table 1). They were all acquired at the National Uni-
versity Hospital, Singapore. The computing platform was a
2.52 GHz Intel Pentium IV desktop PC equipped with 1 GB
RAM and a NVIDIA Quadro 4 700 XGL graphics card with
64 MB onboard memory.

The raw image data and their descriptions are extracted
from the datasets to form the input data of the experiments.
In the encoding phase, we used the proposed clustering al-
gorithm with different initial distance threshold values Dthres

to compress each dataset. The output of this phase are binary
files in the format described in Sect. 3.1.3; each file corre-
sponds to a specific value of Dthres. The computing times
and the compression ratios were measured during the com-
pression. The parameters used and results of this phase are
shown in Tables 2 to 4. In these tables, the compression ratio

Table 1 Dataset specifications

Dataset HAND HEART ABDOMEN

Bits allocated 8 8 8

Rows × Columns 512 × 512 192 × 156 256 × 256

Slices 136 27 12

Time steps 5 20 39

Pixel size (mm) 0.39 × 0.39 1.67 × 1.67 1.02 × 1.02

Inter-slice spacing (mm) 4.0 8.0 5.0

Size (MB) 171.25 15.42 29.25

Modality MRA MRI MRU

Table 2 Results of encoding the HAND dataset using different dis-
tance threshold values

Test name Block size Dthres Time
(s)

Size
(MB)

CR
(%)

HAND A 16 × 16 × 17 0.10 3953 36.27 78.7

HAND B 16 × 16 × 17 0.15 3044 26.29 84.5

HAND C 16 × 16 × 17 0.20 2525 20.94 87.7

Table 3 Results of encoding the HEART dataset using different dis-
tance threshold values

Test name Block size Dthres Time
(s)

Size
(MB)

CR
(%)

HEART A 12 × 13 × 27 0.10 22 3.53 77.1

HEART B 12 × 13 × 27 0.15 16 2.27 85.3

HEART C 12 × 13 × 27 0.20 13 1.61 89.6

(CR) is defined as follows:

CR =
(

1 − Compressed file size

Uncompressed file size

)
× 100%. (8)

The proposed cluster-based time-varying volume render-
ing algorithm was implemented using two underlying ren-
dering techniques: 2-D texture mapping and 3-D texture
mapping. If 3-D texture mapping is supported by the graph-
ics card, the rendering speed can be improved due to the fast
hardware accelerated 3-D interpolation. Otherwise, 2-D tex-
ture mapping can be used; however, software sampling may
be required to create the texture images for the three major
orientations. The experiments evaluate the improvement in
term of rendering speed of our algorithm compared to that
of the 2-D texture mapping and 3-D texture mapping tech-
niques.

After an encoded dataset is loaded into the system, it
is rendered repeatedly 20 times with different preset view-
ing angles while the rendering timing of each time step is
recorded. The execution times of the last 10 running times
are then averaged and reported as the performance result of
the dataset. The design of the experiment ensures that the
recorded execution times are obtained when the system is
stable and renderers can benefit from the I/O cache if possi-
ble. The speedup ratios obtained are presented in Table 5.

As seen from Table 5, depending on the specific dataset
and the underlying rendering techniques used, the proposed
algorithm yielded the rendering speedup of 1.5 to 9.4 com-
pared to the corresponding regular algorithm. This is due

Table 4 Results of encoding the ABDOMEN dataset using different
distance threshold values

Test name Block size Dthres Time
(s)

Size
(MB)

CR
(%)

ABDOMEN A 16 × 16 × 12 0.10 305 20.76 29.0

ABDOMEN B 16 × 16 × 12 0.15 264 17.46 40.3

ABDOMEN C 16 × 16 × 12 0.20 236 14.93 49.0

Table 5 Speedup ratios over the regular rendering techniques obtained
when applying our method on different datasets

Test name 2-D texture mapping 3-D texture mapping

HAND A 7.14 1.56

HAND B 8.72 1.64

HAND C 9.44 1.69

HEART A 3.62 2.23

HEART B 4.71 2.39

HEART C 5.56 2.47

ABDOMEN A 3.98 1.59

ABDOMEN B 4.59 1.63

ABDOMEN C 5.14 1.74

An efficient clustering method for fast rendering of time-varying volumetric medical data

to the fact that the data coherence in time-varying volume
datasets is extensively exploited in both space and time di-
mensions through the employment of our clustering method.
A number of works analyzed in Sect. 2 also considered both
spatial and temporal coherence. However, they mostly were
based on adjacent regions in two dimensions. In our method,
blocks that are grouped into a cluster may come from any
portion of the dataset in both space and time dimensions,
leading to an efficient saving of storage space and I/O band-
width. Another advantage of the method is the simple de-
coding mechanism which is essential for fast volume ren-
dering algorithms. Furthermore, similar regions can be rep-
resented by the same KeyBlock and are rendered only once if
rendering parameters are unchanged. This also significantly
reduces the time cost for rendering.

The proposed algorithm performs a lossy compression of
the time-varying volume data. It is necessary to analyze the
impact of the compression scheme on the visual quality of
rendering. A regression testing method is employed for this
purpose. The regression testing compares a test image that is
produced with an algorithm being evaluated with a reference
image that is assumed to be indeed correct. The comparison
takes into account dithering and anti-aliasing effects, and
creates an output image representing the difference between
the test image and the reference image [22]. The difference
of the two images is also quantified in terms of absolute er-
ror (EA) and thresholded error (ET), which are calculated
based on the following equations:

Di = |rv
i − rt

i | + |gv
i i− gt

i | + |bv − bt
i |

3
,

EA =
∑

i Di

Lc − 1
,

(9)

Ai =
{

Di − T if Di − T > 0

0 otherwise,

ET =
∑

i Ai

Lc − 1
,

(10)

where (rv
i , gv

i , bv
i) and (rt

i , gt
i , bt

i) are the ith color pixel
value (red, green and blue) of the reference image and the
test image respectively; Di is the difference between the ith
pixel of the two images; Lc is the number of color levels
of each channel; T is a threshold-tolerance for pixel differ-
ences. Thus, the absolute error is the total error in compar-
ing the two images, and the thresholded error is the error for
a given pixel minus the threshold and clamped at a minimum
of zero. The latter will be more effective in representing the
noticeable differences between two images.

In our implementation, all the images are generated in
color with red, green and blue channels, and each channel
has 8 bits, i.e., Lc = 28 = 256 levels. In order to avoid mis-
understanding of images with the introduction of pseudo-
colors, pixels are assigned with the same value for all three

Table 6 Error analysis of cluster-based rendering algorithm

Test name EA ET

Inter-step 547.113 104.500

HAND A 15.796 0.009

HAND B 17.938 0.059

HAND C 30.066 0.541

Inter-step 360.980 52.322

HEART A 39.980 0.321

HEART B 54.321 1.182

HEART C 73.284 7.749

Inter-step 2761.917 1658.556

ABDOMEN A 206.086 17.966

ABDOMEN B 254.729 36.396

ABDOMEN C 343.661 70.943

Table 7 Comparison of the image quality at different time steps be-
tween 2-D texture-mapped rendering and cluster-based rendering of
HEART dataset (Dthres = 0.15)

Reference image Rendered image Error

EA = 118.0

ET = 11.50

Step 1

EA = 46.2

ET = 0.30

Step 7

EA = 48.5

ET = 0.18

Step 13

EA = 41.0

ET = 0.04

Step 20

channels and the images thus appear in gray. A threshold-
tolerance of 5 is used in the analysis of the image quality.
It is less than 2% of the maximum pixel difference and nor-
mally is not noticeable by human eyes. The images gener-

Z. Wang et al.

Fig. 2 Comparison of the image quality between (a) 2-D tex-
ture-mapped rendering and (b) cluster-based rendering on the volume
at the last time step in HAND dataset (Dthres = 0.20)

ated by the regular texture mapping method are employed as
the reference images, and the image quality of cluster-based
rendering is evaluated based on the following procedures.
For each dataset, the regression testing is applied to each
pair of corresponding images at each time step. The absolute
error (EA) and thresholded error (ET) of this time step are
calculated accordingly. After the regression testing is fin-
ished for all time steps, the results are averaged and used
to represent the error of the cluster-based rendering of this
dataset. Based on the images generated by the regular tex-
ture mapping method, the regression testing is also applied
between the images at successive time steps. The results are
averaged and used to indicate the inter-step differences. It
provides us an effective reference to evaluate the rendering

Fig. 3 Comparison of the image quality between (a) 2-D tex-
ture-mapped rendering and (b) cluster-based rendering on the volume
at the last time step in ABDOMEN dataset (Dthres = 0.20)

quality. The inter-step errors also serve as a good measure-
ment of the coherence of the dataset. Details of regression
testing can be found in [22]. Table 6 presents the results
from the error analysis. It is clear that the cluster-based ren-
dering algorithm achieves very good rendering quality from
the negligible error. Selected images are shown in Table 7,
Figs. 2 and 3.

5 Conclusion

In this paper, we introduced a clustering-based volume ren-
dering algorithm, which is a new method for fast visual-
ization of time-varying volumetric medical images. The al-

An efficient clustering method for fast rendering of time-varying volumetric medical data

gorithm takes advantage of the inherent characteristics of
time-varying volume data. The data coherence is deeply ex-
ploited in both spatial and time dimensions through the em-
ployment of the clustering technique so that the rendering
performance is enhanced. Since there is no restriction on
the underlying type of renderers, the algorithm also pro-
vides flexibilities for further extensions. Extensive experi-
ments are performed based on the texture-based implemen-
tations of this algorithm. A good performance was achieved
in terms of both speed acceleration and space reduction. Re-
sults demonstrated the superiority of this method over regu-
lar algorithms for time-varying volume rendering. We could
obtain over 89% of compression and up to 9 times increase
in rendering speed. Based on the analytical results of regres-
sion testing, errors introduced due to clustering-tolerance
are quantitatively and visually small. Hence, high rendering
fidelity can be achieved.

In future, besides conducting more experiments on larger
datasets, we will integrate some importance analysis tech-
niques into our clustering method to ensure the dynamic
features of the time-varying volumetric medical data can be
correctly visualized after compression. The relationship be-
tween some parameters, such as the initial threshold values,
and the characteristics of the data will also be investigated.

References

1. Armitage, P., Behrenbruch, C., Brady, M., Moore, N.: Extracting
and visualizing physiological parameters using dynamic contrast-
enhanced magnetic resonance imaging of the breast. Med. Image
Anal. 9(4), 315–329 (2005)

2. Kamasak, M., Bouman, C., Morris, E., Sauer, K.: Direct recon-
struction of kinetic parameter images from dynamic PET data.
IEEE Trans. Med. Imaging 24(5), 636–650 (2005)

3. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient
data clustering method for very large databases. In: Proceedings
of the ACM SIGMOD International Conference on Management
of Data, pp. 103–114. ACM, New York (1996)

4. Wilhelms, J., Gelder, A.V.: Multi-dimensional trees for controlled
volume rendering and compression. In: Proceedings of the Sym-
posium on Volume Visualization 1994 (VVS’94), pp. 27–34.
ACM, New York (1994)

5. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet
coefficients. IEEE Trans. Signal Process. 41, 3445–3462 (1993)

6. Said, A., Pearlman, W.A.: A new, fast, and efficient image codec
based on set partitioning in hierarchical trees. IEEE Trans. Circuits
Syst. Video Technol. 6, 243–250 (1996)

7. Zeng, L., Jansen, C., Marsch, S., Unser, M., Hunziker, P.: Four-
dimensional wavelet compression of arbitrarily sized echocar-
diographic data. IEEE Trans. Med. Imaging 21(9), 1179–1187
(2002)

8. Lalgudi, H., Bilgin, A., Marcellin, M., Nadar, M.: Compression
of fMRI and ultrasound images using 4D SPIHT. In: Proceedings
of the IEEE International Conference on Image Processing 2005
(ICIP 2005), vol. 2, pp. 746–749 (2005)

9. Chrysafis, C., Said, A., Drukarev, A., Islam, A., Pearlman, W.:
SBHP—A low complexity wavelet coder. In: Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal
Processing 2000 (ICASSP’00), vol. 4, pp. 2035–2038 (2000)

10. Liu, Y., Pearlman, W.: Four-dimensional wavelet compression of
4-D medical images using scalable 4-D SBHP. In: Proceedings of
the Data Compression Conference 2007 (DCC’07), pp. 233–242
(2007)

11. Shen, H.W., Chiang, L.J., Ma, K.L.: A fast volume rendering algo-
rithm for time-varying fields using a time-space partitioning (TSP)
tree. In: Proceedings of the IEEE International Conference on Vi-
sualization 1999 (VIS’99), pp. 371–545 (1999)

12. Ellsworth, D., Chiang, L.J., Shen, H.W.: Accelerating time-
varying hardware volume rendering using tsp trees and color-
based error metrics. In: Proceedings of the IEEE Symposium on
Volume Visualization 2000 (VVS’00), pp. 119–128. ACM, New
York (2000)

13. Shen, H.W., Johnson, C.: Differential volume rendering: A fast
volume visualization technique for flow animation. In: Proceed-
ings of the IEEE International Conference on Visualization 1994
(VIS’94), pp. 180–187 (1994)

14. Liao, S.K., Lin, C.F., Chung, Y.C., Lai, J.Z.C.: A differential
volume rendering method with second-order difference for time-
varying volume data. J. Vis. Lang. Comput. 14(3), 233–254
(2003). Computer Graphics and Virtual Reality

15. Liao, S.K., La, J.Z.C., Chung, Y.C.: Time-critical rendering
for time-varying volume data. Comput. Graph. 28(2), 279–288
(2004)

16. Wang, Z., Chui, C.K., Cai, Y., Ang, C.H., Teoh, S.H.: Dynamic
linear level octree-based volume rendering methods for interac-
tive microsurgical simulation. Int. J. Image Graph. 6(2), 155–172
(2006)

17. Schneider, J., Westermann, R.: Compression domain volume ren-
dering. In: Proceedings of the IEEE International Conference on
Visualization 2003 (VIS’03), pp. 293–300 (2003)

18. Kassim, A., Yan, P., Lee, W.S., Sengupta, K.: Motion compensated
lossy-to-lossless compression of 4-D medical images using integer
wavelet transforms. IEEE Trans. Inf. Technol. B 9(1), 132–138
(2005)

19. Sanchez, V., Nasiopoulos, P., Abugharbieh, R.: Efficient loss-
less compression of 4-D medical images based on the advanced
video coding scheme. IEEE Trans. Inf. Technol. B 12(4), 442–446
(2008)

20. Porter, T., Duff, T.: Compositing digital images. ACM Comput.
Graph. 18(3), 253–259 (1984)

21. Levoy, M.: Efficient ray tracing of volume data. ACM Trans.
Graph. 9(3), 245–261 (1990)

22. Schroeder, W., Martin, K.M., Lorensen, W.E.: The Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics, 2nd edn.
Prentice-Hall, Upper Saddle River (1998)

Zhenlan Wang obtained his B.Eng.
in Information Science and Tech-
nology at Xian Jiaotong University
in 1999 and Ph.D. in Computer Sci-
ence at National University of Sin-
gapore in 2006. His research in-
terests are mainly in visualization,
computer graphics and virtual real-
ity for medicine. Dr. Zhenlan Wang
is currently working at Microsoft in
USA.

Z. Wang et al.

Binh P. Nguyen received the B.Eng.
in Information Technology and
M.Sc. in Information Processing
and Communications from Hanoi
University of Technology, Vietnam
in 2002 and 2004, respectively. He
is currently a lecturer at the School
of Information and Communica-
tion Technology, Hanoi University
of Technology, Vietnam and work-
ing toward the Ph.D. degree in the
Department of Electrical and Com-
puter Engineering, National Univer-
sity of Singapore, Singapore. His
research interests include visualiza-

tion of medical images, GPU-based algorithms, multi-core and multi-
GPU computing.

Chee-Kong Chui is currently an
Assistant Professor in the Control
and Mechatronics Group, Depart-
ment of Mechanical Engineering,
National University of Singapore,
Singapore. He was the principal in-
vestigator of the Biomedical Simu-
lation & Device Design Project at
the then Institute of Bioengineer-
ing prior to pursing a Ph.D. in Bio-
medical Precision Engineering Lab,
The University of Tokyo, Japan.
His research interests include com-
puter integrated and robot-assisted
surgery, human-machine interface,

medical device design, biomechanical modeling and simulation.

Jing Qin received his B.Eng. and
M.Eng. degrees from the Institute
of Information Engineering of the
University of Science and Technol-
ogy Beijing, China. He continued
his graduate study and received his
Ph.D. degree from the Department
of Computer Science and Engineer-
ing of the Chinese University of
Hong Kong in 2009. Now he is a re-
search staff of Department of Diag-
nostic Radiology, National Univer-
sity of Singapore. His research in-
terest lies in the broad area of med-
ical imaging, modeling and simula-

tion as well as computer-assisted interventions.

Chuan-Heng Ang is currently a se-
nior lecturer in the School of Com-
puting, National University of Sin-
gapore. His research interest is the
design and implementation of spatial
data structures.

Sim-Heng Ong is an associate pro-
fessor in the Department of Electri-
cal and Computer Engineering and
the Division of Bioengineering, Na-
tional University of Singapore. He
received his B.E. (Hons.) from the
University of Western Australia and
his Ph.D. from the University of
Sydney. His major fields of inter-
est are computer vision and bio-
medical image processing. He has
over 250 papers published in in-
ternational journals and conference
proceedings.

	An efficient clustering method for fast rendering of time-varying volumetric medical data
	Abstract
	Introduction
	Related work
	The clustering-based volume rendering method
	Clustering
	BIRCH-based clustering
	Clustering granularity
	Output data

	Rendering

	Experimental results and discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

